SWE 637 Software Testing Chapter 7

Graph Coverage In-class exercise
Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

Graph Coverage Exercise 1

Assume a graph defined as follows:

$$
\begin{aligned}
& N=\{1,2,3,4\} \\
& N O=\{1\} \\
& N f=\{4\} \\
& E=\{(1,2),(2,3),(3,2),(2,4)\}
\end{aligned}
$$

1. Draw the graph
2. List test paths that satisfy node coverage but NOT edge coverage, or explain why that is not possible
3. List test paths that satisfy edge coverage but NOT edge-pair coverage, or explain why that is not possible
4. List test paths that satisfy edge-pair coverage

Graph Coverage Exercise 1

Assume a graph defined as follows:

$$
\begin{aligned}
& N=\{1,2,3,4\} \\
& N O=\{1\} \\
& N f=\{4\} \\
& E=\{(1,2),(2,3),(3,2),(2,4)\}
\end{aligned}
$$

1. Draw the graph

Node vs. Edge Coverage
2. List test paths that satisfy node coverage but NOT edge coverage, or explain why that is not possible

```
NOTPOSSIBLE - there are no edges that
bupass a node, thus it is impossible to miss
an edge without also missing a node.
```


Edge vs. Edge-pair coverage

3. List test paths that satisfy edge coverage but NOT edge-pair coverage, or explain why that is not possible

> Test path $[1,2,3,2,4]$ satisfies edge coverage but does not satisfy edge-pair coverage because it does not tour edge-pairs $[1,2,4]$ or $[3,2,3]$

Edge-pair coverage
4. List test paths that satisfy edge-pair coverage

```
TRs={[1,2,3],[1,2,4],
    [2,3,2],[3,2,3],
    {3,2,4]}
T={[1,2,4],[1,2,3,2,3,2,4]}
```


Graph Coverage Exercise 2

Assume a graph defined as follows:

$$
\begin{aligned}
& N=\{1,2,3\} \\
& N O=\{1\} \\
& N f=\{3\} \\
& E=\{(1,2),(1,3),(2,1), \\
& (2,3),(3,1)\}
\end{aligned}
$$

1. Draw the graph
2. Which of the following paths are test paths? Why or why not?

$$
\begin{aligned}
& \text { p1 }=[1,2,3,1] \\
& \text { p2 }=[1,3,1,2,3]
\end{aligned}
$$

$$
\text { p3 }=[1,2,3,1,2,1,3]
$$

$$
p 4=[2,3,1,3]
$$

$$
\mathrm{p} 5=[1,2,3,2,3]
$$

3. List the requirements for edge-pair coverage
4. Do the previously-identified test paths satisfy edge-pair coverage? Why or why not?
5. Consider the prime path $[3,1,3]$ and test path $p 6=[1,3,1,2,1,3]$

Does $p 6$ tour the prime path $[3,1,3]$ directly?
Does p 6 tour the prime path $[3,1,3]$ with a sidetrip? If so, what is the sidetrip?

Graph Coverage Exercise 2

Assume a graph defined as follows:
$N=\{1,2,3\}$
NO $=\{1\}$
$N f=\{3\}$
$E=\{(1,2),(1,3),(2,1)$,
$(2,3),(3,1)\}$

1. Draw the graph

Test Paths

Which of the following paths are test paths? Why or why not?

$$
\begin{aligned}
& \mathrm{p} 1=[1,2,3,1] \quad \text { No, doesn'tend at a terminalnode } \\
& \mathrm{p} 2=[1,3,1,2,3] \text { Yes } \\
& \mathrm{p} 3=[1,2,3,1,2,1,3] \text { Yes } \\
& \mathrm{p} 4=[2,3,1,3] \quad \text { No, doesn'tstart at an initial node }
\end{aligned}
$$

$$
\text { p5 }=[1,2,3,2,3] \text { No, edge (3,2) is not part of the graph }
$$

Edge-Pair Coverage

List the requirements for edge-pair coverage

```
Edge-pair TRs:
{ [1,2,1],[1,2,3],
    [1,3,1],[2,1,2],
    [2,1,3],[2,3,1],
    [3,1,2],[3,1,3]}
```


Edge-Pair Coverage

Do the previously-identified test paths satisfy edge-pair coverage? Why or why not?

Test paths:

$\{[1,3,1,2,3],[1,2,3,1,2,1,3]\}$
Edge-pairs:
$\{[1,2,1],[1,2,3],[1,3,1],[2,1,2]$, [2,1,3], [2,3,1], [3,1,2], [3,1,3]\}

No, the test paths do not
tour edge-pairs [2,1,2] or [3, 1,3]

Prime Paths and Touring

Consider the prime path $[3,1,3]$ and test path $p 6=[1,3,1,2,1,3]$
Does p6 tour the prime path $[3,1,3]$ directly? No, because $[3,1,3]$ is not a subpath of $p 6$.

Does p6 tour the prime path $[3,1,3]$ with a sidetrip?

Yes, $p 6$ tours $[3,1,3]$ with the sidetrip $[1,2,1]$.

